Сумма векторов

Остановимся на трудностях, которые возникают при знакомстве со свойствами суммы векторов. Если ученики, работая по учебнику Погорелова, научились пользоваться приведенным здесь формальным и поэтому весьма трудным определением суммы векторов, то знакомство со свойствами сложения трудностей не вызовет.

Иная ситуация при, работе по учебнику Л.С. Атанасяна. Попробуйте спросить учеников, почему при доказательстве переместительного свойства сложения предлагается самостоятельно, рассмотреть случаи, когда слагаемыми являются коллинеарные векторы, а при доказательстве сочетательного свойства ограничиваются рассмотрением неколлинеарных векторов. Обычно такие вопросы ставят в тупик, и поэтому нуждаются в разъяснении.

Все дело в том, что доказательство переместительного свойства, если рассматриваются неколлинеарные векторы, нельзя повторить для коллинеарных векторов. А при доказательстве сочетательного свойства безразлично, какие именно векторы рассматриваются. Правда, увидеть это в тексте, который дан в учебнике, практически невозможно. Чтобы стало очевидным, что никакие различные случаи здесь рассматривать не следует, предлагаю вообще отказаться при доказательстве от рисунка, построить доказательство исключительно на использовании правила трех точек. Доказательство может быть таким:

Дано: векторы

Доказать:

Дополнение традиционной записи сочетательного свойства первым равенством представляется весьма Полезным, так как подчеркивает: выполняя сложение, можно вообще не ставить скобки, а можно ставить их как угодно. К тому же это подсказывает способ доказательства.

В соответствии с принятым в этом учебнике определением, для отыскания суммы , надо отложить: от произвольной точки А вектор от точки В вектор; от точки С вектор. Суммой является вектор .

Сумма в этом случае равна

Сумма

Все три рассматриваемые суммы равны одному и тому же вектору. Теорема доказана.


Информация о ообразовании:

Работа ГУСО "Комплексный центр социального обслуживания населения" Палласовского района
До недавнего времени "Комплексный центр социального обслуживания населения Палласовского района" назывался ГУСО "Палласовский центр социальной помощи семье и детям". На базе учреждения функционировало "Реабилитационное отделение для детей и подростков с ограниченными возмож ...

Рисование в Средние века. Искусство и религия
В эпоху средневековья и христианства достижения реалистического искусства были преданы забвению. Художники не знали ни тех принципов построения изображения на плоскости, которыми пользовались в Др. Греции. Погибли драгоценные рукописи - теоретические труды великих художников, а также многие прослав ...

Значение познавательного интереса в обучении
Весь многовековой опыт прошлого дает основание утверждать, что интерес в обучении представляет собой важный и благоприятный фактор его построения. Ян Амос Коменский, совершивший революцию в дидактике, рассматривая новую школу как источник радости, света и знания, считал интерес одним из главных пут ...

Категории

Copyright © 2025 - All Rights Reserved - www.agepedagog.ru