Ведущей идеей современной концепции школьного образования является идея гуманизации, ставящая в центр процесса обучения ученика с его интересами и возможностями, требующая учёта особенностей его личности. Главными направлениями математического образования является усиление общекультурного звучания и повышение его значимости для формирования личности подрастающего человека. Основные идеи, положенные в основу курса математики 5-6 класса – это общекультурная ориентация содержания, интеллектуальное развитие учащихся средствами математики на материале, отвечающем интересам и возможностям детей 10-12 лет.
Курс математики 5-6 классов – важное звено математического образования и развития школьников. На этом этапе заканчивается в основном обучение счёту на множестве рациональных чисел, формируется понятие переменной и даются первые знания о приёмах решения линейных уравнений, продолжается обучение решению текстовых задач, совершенствуются и обогащаются умения геометрических построений и измерений. Серьёзное внимание уделяется формированию умения рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Курс математики 5-6 классов представляет собой органическую часть всей школьной математики. Поэтому основным требованием к его построению является структурирование содержания на единой идейной основе, которая, с одной стороны, является продолжением и развитием идей, реализованных при обучении математики в начальной школе, и, с другой стороны, служит последующему изучению математики в старших классах.
Продолжается развитие всех содержательно-методических линий курса начальной математики: числовой, алгебраической, функциональной, геометрической, логической, анализ данных. Они реализованы на числовом, алгебраическом, геометрическом материале.
В последнее время существенно пересмотрено изучение геометрии. Целью изучения геометрии в 5-6 классах является познание окружающего мира языком и средствами математики. С помощью построений и измерений учащиеся выявляют различные геометрические закономерности, которые формулируют как предложение, гипотезу. Доказательный аспект геометрии рассматривается в проблемном плане – учащимся прививается мысль, что экспериментальным путём можно открыть многие геометрические факты, но эти факты становятся математическими истинами только тогда, когда они установлены средствами, принятыми в математике.
Таким образом, геометрический материал в этом курсе может быть охарактеризован, как наглядно-деятельностная геометрия. Обучение организуется как процесс интеллектуально-практической деятельности, направленной на развитие пространственных представлений, изобразительных умений, расширение геометрического кругозора, в ходе которого важнейшие свойства геометрических фигур получаются посредством опыта и здравого смысла.
Достаточно новой в курсе 5-6 классов является содержательная линия «Анализ данных», которая объединяет в себе три направления: элементы математической статистики, комбинаторику, теорию вероятностей. Введение этого материала продиктовано самой жизнью. Его изучение направлено на формирование у школьников как общей вероятностной интуиции, так и конкретных способов оценки данных. Основная задача в этом звене – формирование соответствующего словаря, обучение простейшим приёмам сбора, представления и анализа информации, обучение решению комбинаторных задач перебором возможных вариантов, создание элементарных представлений о частоте и вероятности случайных событий.
Однако данная линия присутствует не во всех современных школьных учебниках для 5-6 классов. Особо подробно и ярко представлена данная линия в учебниках.
Алгебраический материал, включённый в курс математики 5-6 классов, является основой для систематического изучения алгебры в старших классах. Можно отметить следующие особенности изучения этого алгебраического материала:
Изучение алгебраического материала основано на научной основе с учётом возрастных особенностей и возможностей учащихся.
Формирование алгебраических понятий и выработка соответствующих умений и навыков составляют единый процесс, построенный на детально разработанной системе упражнений.
Система упражнений служит надёжным средством для овладения современным математическим языком, так как этот язык широко применяется при формулировке различных заданий. Например, «Докажите, что данное неравенство верно: 292 <1000».
Совершенствование вычислительных навыков органически связано с изучением алгебраического материала.
Информация о ообразовании:
Профессиональные деформации педагогов
Предпосылки развития профессиональных деформаций коренятся уже в мотивах выбора педагогической профессии. Это, как осознаваемые мотивы: социальная значимость, имидж, творческий характер, материальные блага, так и неосознаваемые: стремление к власти, доминированию, самоутверждению. В современной пед ...
Понятие об орфограмме. Типы орфограмм
При изучении особенностей усвоения орфографии нужно прежде всего дифференцировать орфограммы. Существуют разные определения понятия “орфограмма”. “Орфограмма - это такое написание в слове, которое соответствует определенному орфографическому правилу”. “Орфограммой называют то или иное написание в с ...
Обзор исследований проблематики нарушений
русской речи под влиянием эстонского языка
Наиболее значительные исследования нарушений русской речи в условиях русско-эстонского билингвизма в последние годы проводили И. Кюльмоя, К. Кару и П. Эслон. На основании рассмотренной группировки ошибок сгруппируем приводимые названными исследователями примеры некоторых ошибок данного (системного) ...