Понятие координат вектора

Страница 2

если существует такое число , что СМ = С1М1; ОС =ОС1 На векторном языке это означает: надо доказать, что Векторные клипарты lenagold коллекция фонов и клипарта.

Точки М и М1, лежат на оси абсцисс. Векторы коллинеарны, поэтому существует такое число , что ОМ = ОМ1.

Точки С и С, лежат на одной прямой, векторы ОС и ОС1, поэтому существует такое число р, что ОС = р ОС1.

По условию М 1С1  Ох и МС  Ох и потому М1С1 МС.

Векторы М1С1 и МС коллинеарны и потому существует такое число d, что МС= dM1C1

Чтобы доказать равенство соответствующих отношений, надо доказать, что равны числа , р и d. Для этого можно, например, доказать, что, если задать отношением , а затем отложить от точки М вектор М1С1, от точки О - вектор ОС1, то отложатся векторы МС и ОС.

4. Если отложить от точки М вектор M1C1, то его концом будет какая-то точка, которую обозначим С2. Надо доказать, что С2 совпадает с С.

О точке С2 известно, что она лежит на прямой СМ, которая проходит через точку М и параллельна прямой С1М1, (вектор МС2 = М1С1 и поэтому коллинеарен вектору М1С1). Если удастся доказать, что точка С2 лежит на прямой ОС1, то тем самым будет доказано, что точки С и С2 совпадают: у прямых ОС1 и СМ только одна точка пересечения. Принадлежность точки прямой ОС, можно доказать, установив, что векторы ОС2 и ОС1 коллинеарны.

Действительно,

ОС2 = ОМ + МС2 = ОМ1 + M1С1,ОС2 = (ОМ1 + М1С1) = ОС,.

Следовательно, числа , р, d одинаковые. Тем самым доказано, что одинаковы модули всех отношений.

5. Каков бы ни был угол , и знаки абсцисс точек С и С1, и знаки их ординат одинаковые. Соответствующие отношения равны.

Поиск доказательства завершен.

В нескольких статьях невозможно остановиться на всех вопросах, вызывающих трудности у учеников. Вместе с тем, очень хочется надеяться: вы не только воспользуетесь имеющимися в статьях конкретными рекомендациями, но и будете стремиться при преподавании всех остальных тем перенести усилия с "запомните" на "примите активное участие в знакомстве с новыми знаниями. Это поможет ученикам не только лучше понять новый материал, но и запомнить его.

Страницы: 1 2 3


Информация о ообразовании:

Своеобразие детской самостоятельной игры
Детская самостоятельная игра имеет ряд особенностей: Игра представляет собой отражение детьми окружающей жизни действий, деятельности людей, их взаимоотношений в обстановке, создаваемой детским воображением. В игре комната может быть и морем, и лесом, и станцией метро, и вагоном железной дороги. Де ...

Опытно-экспериментальная работа по выявлению особенностей эмоциональной сферы младших школьников с умственной отсталостью в учебной деятельности
В ходе исследования нами были использованы методики: методика "Весёлый-грустный", методика неоконченных предложений. Методика "Весёлый - грустный" была выбрана нами в связи с тем, что она ориентирована на выявление эмоционально-значимых сторон жизни младших школьников с умственн ...

Значение произведений «Материнской поэзии» в воспитании ребенка раннего возраста
С первых минут жизни ребенка взрослый, и это, в первую очередь, мать становится для ребенка проводником в этом новом для него мире и источником удовлетворения всех его жизненных потребностей. Общение с матерью, близкий эмоциональный контакт с нею является для ребенка жизненно-необходимым. Первые ме ...

Категории

Copyright © 2025 - All Rights Reserved - www.agepedagog.ru